Simulation of Forest Carbon Fluxes Using Model Incorporation and Data Assimilation
نویسندگان
چکیده
This study improved simulation of forest carbon fluxes in the Changbai Mountains with a process-based model (Biome-BGC) using incorporation and data assimilation. Firstly, the original remote sensing-based MODIS MOD_17 GPP (MOD_17) model was optimized using refined input data and biome-specific parameters. The key ecophysiological parameters of the Biome-BGC model were determined through the Extended Fourier Amplitude Sensitivity Test (EFAST) sensitivity analysis. Then the optimized MOD_17 model was used to calibrate the Biome-BGC model by adjusting the sensitive ecophysiological parameters. Once the best match was found for the 10 selected forest plots for the 8-day GPP estimates from the optimized MOD_17 and from the Biome-BGC, the values of sensitive ecophysiological parameters were determined. The calibrated Biome-BGC model agreed better with the eddy covariance (EC) measurements (R2 = 0.87, RMSE = 1.583 gC ̈m ́2 ̈d ́1) than the original model did (R2 = 0.72, RMSE = 2.419 gC ̈m ́2 ̈d ́1). To provide a best estimate of the true state of the model, the Ensemble Kalman Filter (EnKF) was used to assimilate five years (of eight-day periods between 2003 and 2007) of Global LAnd Surface Satellite (GLASS) LAI products into the calibrated Biome-BGC model. The results indicated that LAI simulated through the assimilated Biome-BGC agreed well with GLASS LAI. GPP performances obtained from the assimilated Biome-BGC were further improved and verified by EC measurements at the Changbai Mountains forest flux site (R2 = 0.92, RMSE = 1.261 gC ̈m ́2 ̈d ́1).
منابع مشابه
Title of Document : CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHERE - VEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER
Title of Document: CARBON CYCLE DATA ASSIMILATION USING A COUPLED ATMOSPHEREVEGETATION MODEL AND THE LOCAL ENSEMBLE TRANSFORM KALMAN FILTER Ji Sun Kang, Doctor of Philosophy, 2009 Directed By: Professor Eugenia Kalnay Department of Atmospheric and Oceanic Science We develop and test new methodologies to best estimate CO2 fluxes on the Earth’s surface by assimilating observations of atmospheric ...
متن کاملA global carbon assimilation system using a modified ensemble Kalman filter
A Global Carbon Assimilation System based on the ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is similar to CarbonTracker, but with several new developments, including inclusion of atmospheric CO2 concentration in state ...
متن کاملTemperature Distribution of a Non gray Gas between Two Parallel Planes Using Exponential Wide Band Model
In this paper, the Radiation Transfer Equation(RTE) for a non-gray gas between two large parallel planes has been solved and the temperature distribution obtained. With the RTE, solution heat fluxes are also determined. Since and are two components of most combustion products, the problem has been solved for these two gases. The results were, whenever possible, compared with data reported el...
متن کاملModeling atmospheric CO2 concentration profiles and fluxes above sloping terrain at a boreal site
CO2 fluxes and concentrations were simulated in the planetary boundary layer above subarctic hilly terrain using a three dimensional model. The model solves the transport equations in the local scale and includes a vegetation sub-model. A WMO/GAW background concentration measurement site and an ecosystem flux measurement site are located inside the modeled region at a hilltop and above a mixed ...
متن کاملA global carbon assimilation system based on a dual optimization method
Ecological models are effective tools for simulating the distribution of global carbon sources and sinks. However, these models often suffer from substantial biases due to inaccurate simulations of complex ecological processes. We introduce a set of scaling factors (parameters) to an ecological model on the basis of plant functional type (PFT) and latitudes. A global carbon assimilation system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016